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Abstract. Haplotypes provide important information in   the 
study of complex diseases and drug design .  However ,  due 
to technical limitations ,  genotype rather than   haplotype data 
are usually obtained .  Thus ,  haplotype inference from  geno-
type data using computational methods is of interest .  There 
are several models in the literature for inferring haplotypes . 
 One of the most important models is haplotype inference by  
 pure parsimony (HIPP) ,  consisting of finding the minimum 
number  of haplotypes that can resolve all given genotypes . 
 It has been shown that HIPP is an NP-hard problem .  In this 
paper ,  we propose a new heuristic greedy algorithm for this  
 problem .  The greedy algorithm predicts an efficient  haplo-
type for inferring the remaining genotypes in each step .  By 
applying our algorithm on a variety of biological and sim-
ulated   data we show that the proposed method is more ef-
fective and accurate   compared to other available algorithms . 
 Additionally ,  we introduce a new measure for evaluating the  
 effectiveness of the algorithms .  This   measure is based on the 
pure parsimony approach which   finds the minimum number 
of haplotypes for  resolving the input genotypes .
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0.1% of   nucleotide positions [1] .  In human genome ,  all  nu-
cleotide sites except SNP positions are the same and SNP 
sites  are biallelic ,  i.e. , exactly two different nucleotides are 
observed   at each SNP site [2] .  In human genome there are 
two copies   of each chromosome .  A description of SNP›s from 
a single   copy is called a haplotype ,  while a description of the 
 SNP’s from the two copies is called a genotype .  Haplotype  
 information is more informative than genotype data for   a va-
riety of purposes such as disease gene mapping ,  drug design 
and   inferring population history   [3] .  Obtaining haplotype 
information via experimental methods is both   expensive and 
time consuming whereas genotypes information are  much 
easier to obtain .  Current sequencing technologies   typically 
determine genotypes rather than haplotypes .  Such   restric-
tions in experimental methods and technologies force us  to 
infer haplotypes from   genotype data ,  which is called haplo-
type inference .  In more words haplotype inference problem 
(HIP) is   as follows :  given a set of genotypes with the same 
length ,  find a   set of haplotypes such that each given genotype 
can be   expressed as a combination of a pair of haplotypes .
    Clark was the first who proposed an algorithm for HIP   [4] . 
 Clark algorithm is   applied widely and is an efficient method 
for HIP .  Finding   effective methods for solving haplotype in-
ference problem is very  attractive and important to research-
ers in the field of biology .  So a   number of different methods 
have been developed for HIP . 
    In general ,  there are two major types of methods for solv-
ing   HIP :  combinatorial and statistical   methods .  Combinato-
rial methods are usually based on some optimization   criteria 
[5] ,  whereas the statistical methods are   based on haplotype 
evolution [6] .  In  contrast to combinatorial methods ,  statisti-
cal methods are usually   time consuming .  
   One of the most popular combinatorial approaches to HIP 
is Haplotype   Inference by Pure Parsimony (HIPP) .  For a set 
of given genotypes   with the same lengths ,  finding the min-
imum number of haplotypes is   the goal of HIPP in which 
each given genotype can be expressed as  a combination of a 
pair of haplotypes . 
  Gusfield was formulated HIPP problem and  proposed an
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1.  Introduction

   Sequencing of the human genome is certainly one of the  
 important milestones at the beginning of the 21st century in 
biology and genetics .  Since then ,  characterization of   genetic 
variations among human populations  has attracted increas-
ing attention and become one of the most   important topics 
in genomics . 
    Single Nucleotide Polymorphisms (SNP’s) are the most 
frequent form  of human genetic variations .  The genomes of 
two individuals are   the same in 99.9% of nucleotide posi-
tions and the  differences occur in SNP sites that are about
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integer linear program (ILP) algorithm to solve  it [7] .  It 
should be noted that in natural populations the number of  
 observed distinct haplotypes is much smaller than the num-
ber of   combinatorial possible haplotypes that can be inferred 
from all   given genotypes .  Moreover ,  the minimum recom-
bination principle is  satisfied in natural population .  The 
minimum recombination principle states that the genetic  re-
combination are rare and thus haplotypes with fewer   recom-
binations should be preferred in a haplotype reconstruction 
 [8, 9] .  Therefore ,  the pure parsimony criterion   for HIP is 
reasonable and biologically  meaningful [7, 10] .
  The HIPP problem is APX-hard (and therefore NP-hard) 
[11] .  For this reason different  kind of heuristic algorithms 
were proposed .  One of the most famous   algorithms for solv-
ing HIPP is Branch and Bound algorithm .  Wang & Xu pro-
posed an exact branch and bound algorithm  called HAPAR 
to find the optimal solution of HIPP [10] .  The branch and 
bound is  an exponential algorithm for which the increase in 
the size of   genotype matrix results in serious problems . 
  Recently Brwon & Harrower [12] proposed an integer lin-
ear program   algorithm that is more efficient compared to the 
first   algorithm proposed by Gusfield [7] .  Similar to branch 
and bound ,  this   algorithm is an exponential algorithm which 
is efficient   only for small size data .  When the number of gen-
otypes or SNP   sites is relatively large this method is not ap-
plicable . 
   Another heuristic method ,  GAHAP ,  based on genetic al-
gorithm is   proposed in [13] .  PTG is another heuristic algo-
rithm   based on parsimonious tree-grow method for HIPP 
problem [14] .  This is an effective algorithm in time and 
 complexity in comparison with other methods .  HAPIN-
FERX is   an implementation of Clark’s algorithm provided 
by  [4] .  Also methods are proposed for the HIPP based on 
boolean satisfiability ,  SAT (SHIPs [15])   and pseudo boolean 
optimization (PolyPB ,  RPoly and NRPoly   [16, 17]) .  In [18] 
the authors proposed a new preprocessing step for the HIPP 
problem   and then solved this problem using GAHAP and 
integer linear program (ILP) algorithms . 
   In statistical methods ,  the frequencies of haplotypes are 
used for   inferring haplotypes from genotype data based 
on the pure   parsimony criterion .  Statistical methods such 
as PHASE [6] and HAPLOTYPER [19] are widely used . 
 PHASE algorithm is usually compared with combinatorial  
 methods for HIPP problem .
  Algorithms for optimization problems usually go through 
a series   of steps ,  with a set of choices at each step .  A greedy 
algorithm   always selects the choice that produces the best 
results in the current step .  In other words ,  it selects a locally 
optimal choice in the   hope that this choice will lead to a glob-
al optimal result .  It   should be noted that greedy algorithms 
do not always produce   optimal solutions ,  but for many prob-
lems they do .  Thus ,  they are   quite powerful and work well 
for a wide range of problems .  Also ,  greedy algorithms are 
usually very fast because they make their   selections locally . 
 In this paper we propose a new greedy  algorithm for HIPP 
problem .  Our greedy algorithm predict an   efficient haplo-
type for inferring the remaining genotypes in each   step .  This 
haplotype is selected using the information of the   remaining

genotypes and the haplotypes which are already added to  the 
set of output haplotypes .  Results of applying this algorithm 
 on a variety of biological and simulated data show that it is 
very   effective with a high accuracy in comparison with other  
 algorithms .  Moreover the order of our algorithm is O(m3n) 
where m is the number of genotypes and n is the number of 
SNP sites   each genotype contains . 
  The rest of this paper is organized as follows :  section 2 
includes   definitions and notation .  In section 3 ,  we present 
our greedy   algorithm in detail .  In section 4 ,  we compare our 
results with the   results obtained by some other methods . 
 Concluding remarks are   presented in section 5 .

2.   Definitions and notation

    An SNP is a single nucleotide site where exactly two dif-
ferent   nucleotides are observed .  Hence each SNP site can 
be characterized   by the elements 0 or 1 .  A haplotype is a 
sequence of SNPs .  In   diploids genome there are two cop-
ies of each chromosome .  The SNP   positions that contain the 
same nucleotide from the two copies of   a chromosome are 
called homozygous ,  otherwise they are called   heterozygous . 
 The alphabet 2 is used for characterizing   heterozygous site . 
 Hence a haplotype is a sequence of alphabets in  {0,1} and a 
genotype is a sequence of alphabets in  {0,1,2} .
   For every two elements x ,  y ϵ {0,1} define

Let h
1
=(h

11
,h

12
,…,h

1n
) and h

2
=(h

21
,h

22
,…,h

2n
) are two haplo-

types of the same length n .  Define h
1  

h
2
 = (h

11
  h
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,h

12
  

h
22 

…, h
1n

 h
2n

) given a pair (h
1
 ,  h

2
) of haplotypes and a gen-

otype g ,  we say  that h1 and h2 resolve g if h
1
  h

2
 = g.  Thus , 

 for every given genotype g with k elements 2 in its  sequence , 
 there are 2k-1 pairs of haplotypes which can   resolve g .  In a 
genotype ,  an SNP position is called resolved if it has values   0 
or 1 and otherwise it is called ambiguous .  A genotype g that 
 contains at most one element 2 is called resolved ,  and it is 
called   ambiguous otherwise .  
   Two genotypes g

1
 = (g

11
, g

12
, …, g

1n
) and g

2
 = (g

21
, g

22
, …, 

g
2n

)   are in conflict if there exists 1≤ i ≤n  such that g
1i
, g

2i
 ϵ 

{0,1}  and g
1i
 ≠ g

2i
.  Two genotypes g

1
 and g

2
 are compatible if 

they are  not in conflict . 
  Let G={g

1
, g

2
, …, g

m
} be a set of m genotypes of  the same 

length n and g
i
={g

i1
, g

i2
, …, g

in
} .  The  genotype matrix corre-

sponding to G is defined by M = (g
ij
) for 1 ≤ i ≤ m  and 1 ≤ j 

≤ n .  Now HIPP problem   is described as follows . 
  HIPP problem :  Given a genotype matrix M ,  find the mini-
mum number of haplotypes  in a way that for each genotype 
g (rows of M) there exist two  haplotypes h

1
 and h

2
 such that 

they resolve g ,  i.e .  h
1
  h

2 
= g .

 

3.  Methods
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  Suppose there is a set G = {g
1
, g

2
, …, g

m
} of genotypes 

 and assume that M is its corresponding genotype matrix . 
 We   describe our greedy algorithm in 6 steps .  In each step 
some   genotypes are removed from G .  This algorithm will 
continue until G becomes empty .  Consider an empty set H 
as  representative set of haplotypes .  In each step at least one  
haplotype is added to H . 
  Step 1: Genotypes that do not have homozygous positions 
 are in fact haplotypes .  In this step all such genotypes are 
added   to H and removed from G . 
   Step 2: Consider all rows of M which have exactly one 2  in 
their entries .  Let g

i 
= {g

i1
, g

i2
, …, g

in
} be such a   row .  Define 

the haplotypes h = {h
i1
, h

i2
, …, h

in
} and h΄ ={h΄

i1
, h΄

i2
, …, h΄

in
} 

that satisfy h  h΄ = g
i
 .  For 1 ≤ j ≤ n ,  h

ij 
= h΄

ij
= g

ij
 if   g΄

ij
 {0, 1} 

and h
ij 
= 1 ,  h΄

ij 
= 0 if g

ij 
= 2.  Now h  h΄= g

i
  .  Add h , h΄  to H 

and remove  g
i
 from G . 

   Step 3: Each remaining genotype of G which can be  re-
solved with at least one pair of the elements of H is removed 
from G . 
  Step 4: Assume H = {h

1
, h

2
, …, h

t
} .  Starting  from step 1 and 

ending up with step 3 we have G = {g
1
, g

2
, …, g

k
}.  Therefore 

none of g
i
 , 1 ≤ i ≤ k can be   resolved by a pair of elements of 

H .  For 1 ≤ i ≤ t ,  define A(h
i
)={h | Ǝ g ϵ G, h  h

i 
= g} .  It is ob-

vious that for 1 ≤ i ≤ t A(h
i
)  H = Ø.  Define A = Ut

i=1
A(h

i
) . 

 If A = Ø go to step 5 of   the algorithm . 
   Let A ≠ Ø  .  For each h ϵ A define B

h 
= {g ϵ G | h

i
  h = g  

for some 1 ≤ i ≤ t} and C
h 
= {g ϵ G | Ǝ h΄ ϵ H, h  h΄ = g}. 

 Let b
h
 and c

h
be the size of B

h
 and C

h
 respectively .  Define d

h 
= (b

h 
+1) × (c

h 
+1).  Let h

0
 be an element of A such that d

h0
 = 

Max {d
h
 ϵ | h ϵ A}.  We add h

0
 to H and remove B

h0
 from G . 

 Now go to step 3 .
  Step 5: If each pairs of genotypes are in conflict then  go to 
step 6 .  Otherwise consider all pairs of compatible genotypes  
 and randomly choose one of these pairs such as g

1 
and g

2
.  So 

 there exists a haplotype h and two haplotypes h
1
 and h

2
 such 

h
1
  h = g

1
 and h

2
  h = g

2
 .  Add h to H .  Go  to step 4 .

  Step 6: For each genotype g ϵ G add two haplotypes  h
1
 and 

h
2
 at random to H such that h

1
  h

2 
= g and  the algorithm 

halts .

4.  Results and discussion

  The greedy algorithm is applied on both real and simulated 
data  sets and the performance of the algorithm is compared 
with   the existing algorithms for which some results are re-
ported .  To analyze the performance of greedy   algorithm ,  we 
use the error rate factor which is frequently used in   HIP [14] . 
 The error rate factor  is the proportion of genotypes whose 
original haplotypes are   inferred incorrectly by the algorithm . 
 For example ,  suppose that   the number of input genotypes 
are y ,  and the number of genotypes  that are incorrectly in-
ferred are x .  Thus ,  the error rate is x/y.  Since we use the pure 
parsimony approach ,  the goal is to find   the minimum possi-
ble number of haplotypes for inferring the input   genotypes . 
 Thus ,  we define another criterion for measuring the   perfor-
mance of the proposed algorithm .  This criterion is the   num-
ber of haplotypes that the algorithm produces as the output .

  If   it is less than or equal to the number of input haplotypes , 
 then   the results are close to the optimal results which can be 
 produced by pure parsimony .

4.1.  Real datases

4.1.1.  AR gene data

  β
2
-adrenergic receptors (β

2
AR) are G protein-coupled   re-

ceptors that mediate the actions of catecholamine in multiple 
 issues .  13 variable sites within a span of 1.6kb were reported 
in   the human β

2
AR gene .  Among 121 individuals ,  there are 

18  distinct genotypes and 10 haplotypes resolve all the 18 
genotypes .  10 haplotypes and 18 genotypes are illustrated in 
Tables 1 and 2 [10] . 
Implementation of   the exact algorithm HAPAR [10] for the 
HIPP problem shows that the minimum   number of haplo-
types needed to resolve the 18 genotypes is 10 and the hap-
lotype   set output by HAPAR is exactly the original one .  It 
means that the error rate of  HAPAR is 0 ,  but it takes a very 
long time (about 150 seconds) to   run the algorithm .  GAHAP 
also returns the same set of   haplotypes like HAPAR in sever-
al seconds as they mentioned in their paper [13] .  In [14] the 
authors ran PTG on β

2
AR gene data 100 times; in 80 runs , 

 they found 10 distinct haplotypes to resolve all 18 genotypes , 
 where 9 of the 10 haplotypes correctly resolve 17 genotypes . 
 The   average error rate in 100 runs was 0.056 .  In particular , 
 in 10 of 100  runs ,  they found all 10 correct haplotypes to re-
solve all 18 genotypes .  The average running time was ~ 0.016 
s .  The number of haplotypes which is found  by our greedy 
algorithm is exactly 10 ,  the error rate is 0 and   the running 
time is very small (about 0.019 seconds) .  The results of the 
algorithms are shown in Table 3 .

4.1.2.  Angiotensin converting enzyme (ACE) gene data

 Angiotensin converting enzyme (ACE) is encoded by the 
gene DCP1 .  Information about genomic sequencing of 
DCP1 from 11 individuals   in 22 chromosomes are consid-
ered [20] .  There are 52  SNP sites and 11 genotypes ,  which 
are resolved by 13 distinct   haplotypes .  Two genotypes from 
dataset have the same sequences .  Thus only 10 different gen-
otypes exist as input data .  10 genotypes   and 13 haplotypes 
are illustrated in Tables 4 and 5 .  The results   of the error rate 

Table 1.  Ten haplotypes of β
2
AR genes.
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of different algorithms are shown in Table 6 .  The error rate of  
 PTG and HAPLOTYPER are smaller than other algorithms . 
 But the number   of output haplotypes which are produced by 
greedy algorithm is   exactly 13 which is equal to the number 
of original haplotypes .  This   shows that the greedy algorithm 
does not produce extra haplotypes for this dataset .  Thus ,  the 
results obtained by the greedy algorithm satisfy the   purpose 
of parsimony approach .  The number of haplotypes for other 
methods are not available .

4.1.3.   GHI gene promoter data

 We use the empirical dataset of Horan [21] which   contains 
16 SNP sites and 308 genotypes .  This dataset is also used 
 by Adkins [22] .  It contains 27 original haplotypes  and 54 
genotypes .  The error rate of greedy algorithm on this  dataset 
is equal to 0.18 .  The greedy algorithm found 21 haplotypes  
 as the output .  Thus ,  the number of output haplotypes is less 
than  the number of original haplotypes and it is closer to the 
pure  parsimony purpose .  These data are not used by other 
algorithms and we applied the data   to show the efficiency of 
our greedy algorithm .

4.2.   Random datasets

4.2.1.   Maize dataset

Table 2. Eighteen genotypes of β
2
AR genes.

Table 3. Error rate of β
2
AR dataset.

 The Maize data were used in [10 , 23] is one of   the bench-
marks to evaluate haplotyping programs .  The locus 14 of  
 maize profile containing 18 SNP sites and 4 different hap-
lotypes (with   frequencies 9 (27%) ,  17 (47%) ,  8 (23%) and 1 
(3%)) were   identified .  We randomly generated four samples 
as input data .  Each   sample contains some genotypes that 
were constructed by randomly   picking 2 haplotypes accord-
ing to their frequencies and conflating   them as shown in 
Table 7 .  The simulation results for different   algorithms are 
shown in Table 8 .  These results suggest that the  error rate of 
the greedy algorithm is smaller than or equal to that of other  
 algorithms for all Maize dataset .

4.2.2.  Simulated dataset

 In this section simulated data are used .  A well-known haplo-
type   generator ,  ms ,  in [24] is applied for generating   genotype 
matrix as input for HIPP problem .  This program is based  on 
the coalescent model .  In that model we assume each geno-
type is  determined exactly by a pair of haplotypes and the 
rate of   recombination is zero .  Software ms generates 2×m 
 haplotypes of the same length n (n is the number of SNP 
sites)  and then randomly pairs them to obtain $m$ geno-
types .  These m  genotypes are used as an input data for HIPP 
problem .  In this   section we generate 4 model samples based 
on ms program .  The   number of SNP sites is fixed and the 
number of genotypes varies .  Results of comparisons of the 
efficiency of our algorithm with   other methods are shown 
in Table 9 .  As shown in table 9 ,  the results obtained   by the 
greedy algorithm is better than other algorithms except for 
one sample size   in which the HAPLOTYPER error rate is 
better than the greedy error rate .

5.  Conclusion

 In this paper ,  we proposed a new heuristic greedy algorithm 
for the HIPP which is an NP-hard problem [11] .  The re-
sults show that the proposed algorithm works efficiently 
 compared to other algorithms .  One of the most important 
features of our   greedy algorithm is its ability to predict an 
efficient haplotype   for inferring the remaining genotypes in 
each step .  The   information for predicting an efficient hap-
lotype is calculated  using the remaining genotypes and the 
haplotypes which are already   added to the set of the haplo-
types .  Since we use pure   parsimony approach ,  a new measure 
is introduced for evaluating the   effectiveness of algorithms . 
 This new measure is the number of   haplotypes that the al-
gorithm returns as the output .  If this   number is less than or 
equal to the number of original haplotypes ,  the results are 
very close to the results of pure parsimony .  The   running time 
of the algorithm is O(m3n) where m is the number  of given 
genotypes and n is the number of SNP sites .
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Table 4. Thirteen haplotypes of ACE genes.

Table 5. Ten genotypes of ACE genes.

Table 6. Error rate of ACE dataset.

Table 7. Haplotypes for Maize dataset.

Table 8. Error rates of Maize dataset.

Table 9. Error rates of simulated dataset.
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