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Abstract. Haplotypes provide important information in‎ ‎the 
study of complex diseases and drug design‎. ‎However‎, ‎due 
to technical limitations‎, ‎genotype rather than‎ ‎haplotype data 
are usually obtained‎. ‎Thus‎, ‎haplotype inference from ‎geno-
type data using computational methods is of interest‎. ‎There 
are several models in the literature for inferring haplotypes‎. 
‎One of the most important models is haplotype inference by‎ 
‎pure parsimony (HIPP)‎, ‎consisting of finding the minimum 
number ‎of haplotypes that can resolve all given genotypes‎. 
‎It has been shown that HIPP is an NP-hard problem‎. ‎In this 
paper‎, ‎we propose a new heuristic greedy algorithm for this‎ 
‎problem‎. ‎The greedy algorithm predicts an efficient ‎haplo-
type for inferring the remaining genotypes in each step‎. ‎By 
applying our algorithm on a variety of biological and sim-
ulated‎ ‎data we show that the proposed method is more ef-
fective and accurate‎ ‎compared to other available algorithms‎. 
‎Additionally‎, ‎we introduce a new measure for evaluating the‎ 
‎effectiveness of the algorithms‎. ‎This‎ ‎measure is based on the 
pure parsimony approach which‎ ‎finds the minimum number 
of haplotypes for ‎resolving the input genotypes‎.
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0.1% of‎ ‎nucleotide positions [1]‎. ‎In human genome‎, ‎all‎ nu-
cleotide sites except SNP positions are the same and SNP 
sites ‎are biallelic‎, ‎i.e.‎, exactly two different nucleotides are 
observed‎ ‎at each SNP site [2]‎. ‎In human genome there are 
two copies‎ ‎of each chromosome‎. ‎A description of SNP›s from 
a single‎ ‎copy is called a haplotype‎, ‎while a description of the 
‎SNP’s from the two copies is called a genotype‎. ‎Haplotype‎ 
‎information is more informative than genotype data for‎ ‎a va-
riety of purposes such as disease gene mapping‎, ‎drug design 
and‎ ‎inferring population history‎ ‎[3]‎. ‎Obtaining haplotype 
information via experimental methods is both‎ ‎expensive and 
time consuming whereas genotypes information are ‎much 
easier to obtain‎. ‎Current sequencing technologies‎ ‎typically 
determine genotypes rather than haplotypes‎. ‎Such‎ ‎restric-
tions in experimental methods and technologies force us ‎to 
infer haplotypes from‎ ‎genotype data‎, ‎which is called haplo-
type inference‎. ‎In more words haplotype inference problem 
(HIP) is‎ ‎as follows‎: ‎given a set of genotypes with the same 
length‎, ‎find a‎ ‎set of haplotypes such that each given genotype 
can be‎ ‎expressed as a combination of a pair of haplotypes‎.
   ‎Clark was the first who proposed an algorithm for HIP‎ ‎[4]‎. 
‎Clark algorithm is‎ ‎applied widely and is an efficient method 
for HIP‎. ‎Finding‎ ‎effective methods for solving haplotype in-
ference problem is very ‎attractive and important to research-
ers in the field of biology‎. ‎So a‎ ‎number of different methods 
have been developed for HIP‎. 
   ‎In general‎, ‎there are two major types of methods for solv-
ing‎ ‎HIP‎: ‎combinatorial and statistical‎ ‎methods‎. ‎Combinato-
rial methods are usually based on some optimization‎ ‎criteria 
[5]‎, ‎whereas the statistical methods are‎ ‎based on haplotype 
evolution [6]‎. ‎In ‎contrast to combinatorial methods‎, ‎statisti-
cal methods are usually‎ ‎time consuming‎. ‎
   One of the most popular combinatorial approaches to HIP 
is Haplotype‎ ‎Inference by Pure Parsimony (HIPP)‎. ‎For a set 
of given genotypes‎ ‎with the same lengths‎, ‎finding the min-
imum number of haplotypes is‎ ‎the goal of HIPP in which 
each given genotype can be expressed as ‎a combination of a 
pair of haplotypes‎. 
  Gusfield was formulated HIPP problem and ‎proposed an
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1.  Introduction

   Sequencing of the human genome is certainly one of the‎ 
‎important milestones at the beginning of the 21st century in 
biology and genetics‎. ‎Since then‎, ‎characterization of‎ ‎genetic 
variations among human populations ‎has attracted increas-
ing attention and become one of the most‎ ‎important topics 
in genomics‎. 
   ‎Single Nucleotide Polymorphisms (SNP’s) are the most 
frequent form ‎of human genetic variations‎. ‎The genomes of 
two individuals are‎ ‎the same in 99.9% of nucleotide posi-
tions and the ‎differences occur in SNP sites that are about
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integer linear program (ILP) algorithm to solve ‎it [7]‎. ‎It 
should be noted that in natural populations the number of‎ 
‎observed distinct haplotypes is much smaller than the num-
ber of‎ ‎combinatorial possible haplotypes that can be inferred 
from all‎ ‎given genotypes‎. ‎Moreover‎, ‎the minimum recom-
bination principle is ‎satisfied in natural population‎. ‎The 
minimum recombination principle states that the genetic ‎re-
combination are rare and thus haplotypes with fewer‎ ‎recom-
binations should be preferred in a haplotype reconstruction 
‎[8, 9]‎. ‎Therefore‎, ‎the pure parsimony criterion‎ ‎for HIP is 
reasonable and biologically ‎meaningful [7, 10]‎.
  The HIPP problem is APX-hard (and therefore NP-hard) 
[11]‎. ‎For this reason different ‎kind of heuristic algorithms 
were proposed‎. ‎One of the most famous‎ ‎algorithms for solv-
ing HIPP is Branch and Bound algorithm‎. ‎Wang & Xu pro-
posed an exact branch and bound algorithm ‎called HAPAR 
to find the optimal solution of HIPP [10]‎. ‎The branch and 
bound is ‎an exponential algorithm for which the increase in 
the size of‎ ‎genotype matrix results in serious problems‎. 
  Recently Brwon & Harrower [12] proposed an integer lin-
ear program‎ ‎algorithm that is more efficient compared to the 
first‎ ‎algorithm proposed by Gusfield [7]‎. ‎Similar to branch 
and bound‎, ‎this‎ ‎algorithm is an exponential algorithm which 
is efficient‎ ‎only for small size data‎. ‎When the number of gen-
otypes or SNP‎ ‎sites is relatively large this method is not ap-
plicable‎. 
  ‎Another heuristic method‎, ‎GAHAP‎, ‎based on genetic al-
gorithm is‎ ‎proposed in [13]‎. ‎PTG is another heuristic algo-
rithm‎ ‎based on parsimonious tree-grow method for HIPP 
problem [14]‎. ‎This is an effective algorithm in time and 
‎complexity in comparison with other methods‎. ‎HAPIN-
FERX is‎ ‎an implementation of Clark’s algorithm provided 
by‎ [4]‎. ‎Also methods are proposed for the HIPP based on 
boolean satisfiability‎, ‎SAT (SHIPs [15])‎ ‎and pseudo boolean 
optimization (PolyPB‎, ‎RPoly and NRPoly‎ ‎[16, 17])‎. ‎In [18] 
the authors proposed a new preprocessing step for the HIPP 
problem‎ ‎and then solved this problem using GAHAP and 
integer linear program (ILP) algorithms‎. 
  ‎In statistical methods‎, ‎the frequencies of haplotypes are 
used for‎ ‎inferring haplotypes from genotype data based 
on the pure‎ ‎parsimony criterion‎. ‎Statistical methods such 
as PHASE [6] and HAPLOTYPER [19] are widely used‎. 
‎PHASE algorithm is usually compared with combinatorial‎ 
‎methods for HIPP problem‎.
  Algorithms for optimization problems usually go through 
a series‎ ‎of steps‎, ‎with a set of choices at each step‎. ‎A greedy 
algorithm‎ ‎always selects the choice that produces the best 
results in the current step‎. ‎In other words‎, ‎it selects a locally 
optimal choice in the‎ ‎hope that this choice will lead to a glob-
al optimal result‎. ‎It‎ ‎should be noted that greedy algorithms 
do not always produce‎ ‎optimal solutions‎, ‎but for many prob-
lems they do‎. ‎Thus‎, ‎they are‎ ‎quite powerful and work well 
for a wide range of problems‎. ‎Also‎, ‎greedy algorithms are 
usually very fast because they make their‎ ‎selections locally‎. 
‎In this paper we propose a new greedy ‎algorithm for HIPP 
problem‎. ‎Our greedy algorithm predict an‎ ‎efficient haplo-
type for inferring the remaining genotypes in each‎ ‎step‎. ‎This 
haplotype is selected using the information of the‎ ‎remaining

genotypes and the haplotypes which are already added to ‎the 
set of output haplotypes‎. ‎Results of applying this algorithm 
‎on a variety of biological and simulated data show that it is 
very‎ ‎effective with a high accuracy in comparison with other‎ 
‎algorithms‎. ‎Moreover the order of our algorithm is O(m3n) 
where m is the number of genotypes and n is the number of 
SNP sites‎ ‎each genotype contains‎. 
  The rest of this paper is organized as follows‎: ‎section 2 
includes‎ ‎definitions and notation‎. ‎In section 3‎, ‎we present 
our greedy‎ ‎algorithm in detail‎. ‎In section 4‎, ‎we compare our 
results with the‎ ‎results obtained by some other methods‎. 
‎Concluding remarks are‎ ‎presented in section 5‎.

2.   Definitions and notation

   ‎An SNP is a single nucleotide site where exactly two dif-
ferent‎ ‎nucleotides are observed‎. ‎Hence each SNP site can 
be characterized‎ ‎by the elements 0 or 1‎. ‎A haplotype is a 
sequence of SNPs‎. ‎In‎ ‎diploids genome there are two cop-
ies of each chromosome‎. ‎The SNP‎ ‎positions that contain the 
same nucleotide from the two copies of‎ ‎a chromosome are 
called homozygous‎, ‎otherwise they are called‎ ‎heterozygous‎. 
‎The alphabet 2 is used for characterizing‎ ‎heterozygous site‎. 
‎Hence a haplotype is a sequence of alphabets in ‎{0,1} and a 
genotype is a sequence of alphabets in ‎{0,1,2}‎.
   For every two elements x‎, ‎y ϵ {0,1} define

Let h
1
=(h
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,h
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,…,h

1n
) and h

2
=(h
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,h

22
,…,h

2n
) are two haplo-

types of the same length n‎. ‎Define h
1  

h
2
 = (h
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h
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) given a pair (h
1
‎, ‎h

2
) of haplotypes and a gen-

otype g‎, ‎we say ‎that h1 and h2 resolve g if h
1
  h

2
 = g. ‎Thus‎, 

‎for every given genotype g with k elements 2 in its ‎sequence‎, 
‎there are 2k-1 pairs of haplotypes which can‎ ‎resolve g‎. ‎In a 
genotype‎, ‎an SNP position is called resolved if it has values‎ ‎0 
or 1 and otherwise it is called ambiguous‎. ‎A genotype g that 
‎contains at most one element 2 is called resolved‎, ‎and it is 
called‎ ‎ambiguous otherwise‎.  
  ‎Two genotypes g

1
 = (g

11
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 ϵ 

{0,1}  and g
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 ≠ g

2i
. ‎Two genotypes g

1
 and g

2
 are compatible if 

they are ‎not in conflict‎. 
  Let G={g

1
, g

2
, …, g

m
} be a set of m genotypes of ‎the same 

length n and g
i
={g

i1
, g

i2
, …, g

in
}‎. ‎The ‎genotype matrix corre-

sponding to G is defined by M = (g
ij
) for 1 ≤ i ≤ m  and 1 ≤ j 

≤ n‎. ‎Now HIPP problem‎ ‎is described as follows‎. 
  HIPP problem‎: ‎Given a genotype matrix M‎, ‎find the mini-
mum number of haplotypes ‎in a way that for each genotype 
g (rows of M) there exist two ‎haplotypes h

1
 and h

2
 such that 

they resolve g‎, ‎i.e‎. ‎h
1
  h

2 
= g‎.

‎

3.  Methods
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  Suppose there is a set G = {g
1
, g

2
, …, g

m
} of genotypes 

‎and assume that M is its corresponding genotype matrix‎. 
‎We‎ ‎describe our greedy algorithm in 6 steps‎. ‎In each step 
some‎ ‎genotypes are removed from G‎. ‎This algorithm will 
continue until G becomes empty‎. ‎Consider an empty set H 
as ‎representative set of haplotypes‎. ‎In each step at least one‎ 
haplotype is added to H‎. 
  Step 1: Genotypes that do not have homozygous positions 
‎are in fact haplotypes‎. ‎In this step all such genotypes are 
added‎ ‎to H and removed from G‎. 
  ‎Step 2: Consider all rows of M which have exactly one 2 ‎in 
their entries‎. ‎Let g

i 
= {g

i1
, g

i2
, …, g

in
} be such a‎ ‎row‎. ‎Define 

the haplotypes h = {h
i1
, h

i2
, …, h

in
} and h΄ ={h΄

i1
, h΄

i2
, …, h΄

in
} 

that satisfy h  h΄ = g
i
‎. ‎For 1 ≤ j ≤ n‎, ‎h

ij 
= h΄

ij
= g

ij
 if‎ ‎g΄

ij
 {0, 1} 

and h
ij 
= 1‎, ‎h΄

ij 
= 0 if g

ij 
= 2. ‎Now h  h΄= g

i
‎‎. ‎Add h‎, h΄‎ to H 

and remove ‎g
i
 from G‎. 

  ‎Step 3: Each remaining genotype of G which can be ‎re-
solved with at least one pair of the elements of H is removed 
from G‎. 
  Step 4: Assume H = {h

1
, h

2
, …, h

t
}‎. ‎Starting ‎from step 1 and 

ending up with step 3 we have G = {g
1
, g

2
, …, g

k
}. ‎Therefore 

none of g
i
‎, 1 ≤ i ≤ k can be‎ ‎resolved by a pair of elements of 

H‎. ‎For 1 ≤ i ≤ t‎, ‎define A(h
i
)={h | Ǝ g ϵ G, h  h

i 
= g}‎. ‎It is ob-

vious that for 1 ≤ i ≤ t A(h
i
)  H = Ø. ‎Define A = Ut

i=1
A(h

i
)‎. 

‎If A = Ø go to step 5 of‎ ‎the algorithm‎. 
  ‎Let A ≠ Ø ‎. ‎For each h ϵ A define B

h 
= {g ϵ G | h

i
  h = g  

for some 1 ≤ i ≤ t} and C
h 
= {g ϵ G | Ǝ h΄ ϵ H, h  h΄ = g}. 

‎Let b
h
 and c

h
be the size of B

h
 and C

h
 respectively‎. ‎Define d

h 
= (b

h 
+1) × (c

h 
+1). ‎Let h

0
 be an element of A such that d

h0
 = 

Max {d
h
 ϵ | h ϵ A}. ‎We add h

0
 to H and remove B

h0
 from G‎. 

‎Now go to step 3‎.
  Step 5: If each pairs of genotypes are in conflict then ‎go to 
step 6‎. ‎Otherwise consider all pairs of compatible genotypes‎ 
‎and randomly choose one of these pairs such as g

1 
and g

2
. ‎So 

‎there exists a haplotype h and two haplotypes h
1
 and h

2
 such 

h
1
  h = g

1
 and h

2
  h = g

2
‎. ‎Add h to H‎. ‎Go ‎to step 4‎.

  Step 6: For each genotype g ϵ G add two haplotypes ‎h
1
 and 

h
2
 at random to H such that h

1
  h

2 
= g and ‎the algorithm 

halts‎.

4.  Results and discussion

  The greedy algorithm is applied on both real and simulated 
data ‎sets and the performance of the algorithm is compared 
with‎ ‎the existing algorithms for which some results are re-
ported‎. ‎To analyze the performance of greedy‎ ‎algorithm‎, ‎we 
use the error rate factor which is frequently used in‎ ‎HIP [14]‎. 
‎The error rate factor ‎is the proportion of genotypes whose 
original haplotypes are‎ ‎inferred incorrectly by the algorithm‎. 
‎For example‎, ‎suppose that‎ ‎the number of input genotypes 
are y‎, ‎and the number of genotypes ‎that are incorrectly in-
ferred are x‎. ‎Thus‎, ‎the error rate is x/y. ‎Since we use the pure 
parsimony approach‎, ‎the goal is to find‎ ‎the minimum possi-
ble number of haplotypes for inferring the input‎ ‎genotypes‎. 
‎Thus‎, ‎we define another criterion for measuring the‎ ‎perfor-
mance of the proposed algorithm‎. ‎This criterion is the‎ ‎num-
ber of haplotypes that the algorithm produces as the output‎.

 ‎If‎ ‎it is less than or equal to the number of input haplotypes‎, 
‎then‎ ‎the results are close to the optimal results which can be 
‎produced by pure parsimony‎.

4.1.  Real datases

4.1.1.  AR gene data

  β
2
-adrenergic receptors (β

2
AR) are G protein-coupled‎ ‎re-

ceptors that mediate the actions of catecholamine in multiple 
‎issues‎. ‎13 variable sites within a span of 1.6kb were reported 
in‎ ‎the human β

2
AR gene‎. ‎Among 121 individuals‎, ‎there are 

18 ‎distinct genotypes and 10 haplotypes resolve all the 18 
genotypes‎. ‎10 haplotypes and 18 genotypes are illustrated in 
Tables 1 and 2 [10]‎. 
Implementation of‎ ‎the exact algorithm HAPAR [10] for the 
HIPP problem shows that the minimum‎ ‎number of haplo-
types needed to resolve the 18 genotypes is 10 and the hap-
lotype‎ ‎set output by HAPAR is exactly the original one‎. ‎It 
means that the error rate of ‎HAPAR is 0‎, ‎but it takes a very 
long time (about 150 seconds) to‎ ‎run the algorithm‎. ‎GAHAP 
also returns the same set of‎ ‎haplotypes like HAPAR in sever-
al seconds as they mentioned in their paper [13]‎. ‎In [14] the 
authors ran PTG on β

2
AR gene data 100 times; in 80 runs‎, 

‎they found 10 distinct haplotypes to resolve all 18 genotypes‎, 
‎where 9 of the 10 haplotypes correctly resolve 17 genotypes‎. 
‎The‎ ‎average error rate in 100 runs was 0.056‎. ‎In particular‎, 
‎in 10 of 100 ‎runs‎, ‎they found all 10 correct haplotypes to re-
solve all 18 genotypes‎. ‎The average running time was ~ 0.016 
s‎. ‎The number of haplotypes which is found ‎by our greedy 
algorithm is exactly 10‎, ‎the error rate is 0 and‎ ‎the running 
time is very small (about 0.019 seconds)‎. ‎The results of the 
algorithms are shown in Table 3‎.

4.1.2.  Angiotensin converting enzyme (ACE) gene data

‎Angiotensin converting enzyme (ACE) is encoded by the 
gene DCP1‎. ‎Information about genomic sequencing of 
DCP1 from 11 individuals‎ ‎in 22 chromosomes are consid-
ered [20]‎. ‎There are 52 ‎SNP sites and 11 genotypes‎, ‎which 
are resolved by 13 distinct‎ ‎haplotypes‎. ‎Two genotypes from 
dataset have the same sequences‎. ‎Thus only 10 different gen-
otypes exist as input data‎. ‎10 genotypes‎ ‎and 13 haplotypes 
are illustrated in Tables 4 and 5‎. ‎The results‎ ‎of the error rate 

Table 1.  Ten haplotypes of β
2
AR genes.
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of different algorithms are shown in Table 6‎. ‎The error rate of‎ 
‎PTG and HAPLOTYPER are smaller than other algorithms‎. 
‎But the number‎ ‎of output haplotypes which are produced by 
greedy algorithm is‎ ‎exactly 13 which is equal to the number 
of original haplotypes‎. ‎This‎ ‎shows that the greedy algorithm 
does not produce extra haplotypes for this dataset‎. ‎Thus‎, ‎the 
results obtained by the greedy algorithm satisfy the‎ ‎purpose 
of parsimony approach‎. ‎The number of haplotypes for other 
methods are not available‎.

4.1.3.   GHI gene promoter data

‎We use the empirical dataset of Horan [21] which‎ ‎contains 
16 SNP sites and 308 genotypes‎. ‎This dataset is also used 
‎by Adkins [22]‎. ‎It contains 27 original haplotypes ‎and 54 
genotypes‎. ‎The error rate of greedy algorithm on this ‎dataset 
is equal to 0.18‎. ‎The greedy algorithm found 21 haplotypes‎ 
‎as the output‎. ‎Thus‎, ‎the number of output haplotypes is less 
than ‎the number of original haplotypes and it is closer to the 
pure ‎parsimony purpose‎. ‎These data are not used by other 
algorithms and we applied the data‎ ‎to show the efficiency of 
our greedy algorithm‎.

4.2.   Random datasets

4.2.1.   Maize dataset

Table 2. Eighteen genotypes of β
2
AR genes.

Table 3. Error rate of β
2
AR dataset.

‎The Maize data were used in [10‎, 23] is one of‎ ‎the bench-
marks to evaluate haplotyping programs‎. ‎The locus 14 of‎ 
‎maize profile containing 18 SNP sites and 4 different hap-
lotypes (with‎ ‎frequencies 9 (27%)‎, ‎17 (47%)‎, ‎8 (23%) and 1 
(3%)) were‎ ‎identified‎. ‎We randomly generated four samples 
as input data‎. ‎Each‎ ‎sample contains some genotypes that 
were constructed by randomly‎ ‎picking 2 haplotypes accord-
ing to their frequencies and conflating‎ ‎them as shown in 
Table 7‎. ‎The simulation results for different‎ ‎algorithms are 
shown in Table 8‎. ‎These results suggest that the ‎error rate of 
the greedy algorithm is smaller than or equal to that of other‎ 
‎algorithms for all Maize dataset‎.

4.2.2.  Simulated dataset

‎In this section simulated data are used‎. ‎A well-known haplo-
type‎ ‎generator‎, ‎ms‎, ‎in [24] is applied for generating‎ ‎genotype 
matrix as input for HIPP problem‎. ‎This program is based ‎on 
the coalescent model‎. ‎In that model we assume each geno-
type is ‎determined exactly by a pair of haplotypes and the 
rate of‎ ‎recombination is zero‎. ‎Software ms generates 2×m 
‎haplotypes of the same length n (n is the number of SNP 
sites) ‎and then randomly pairs them to obtain $m$ geno-
types‎. ‎These m ‎genotypes are used as an input data for HIPP 
problem‎. ‎In this‎ ‎section we generate 4 model samples based 
on ms program‎. ‎The‎ ‎number of SNP sites is fixed and the 
number of genotypes varies‎. ‎Results of comparisons of the 
efficiency of our algorithm with‎ ‎other methods are shown 
in Table 9‎. ‎As shown in table 9‎, ‎the results obtained‎ ‎by the 
greedy algorithm is better than other algorithms except for 
one sample size‎ ‎in which the HAPLOTYPER error rate is 
better than the greedy error rate‎.

5.  Conclusion

‎In this paper‎, ‎we proposed a new heuristic greedy algorithm 
for the HIPP which is an NP-hard problem [11]‎. ‎The re-
sults show that the proposed algorithm works efficiently 
‎compared to other algorithms‎. ‎One of the most important 
features of our‎ ‎greedy algorithm is its ability to predict an 
efficient haplotype‎ ‎for inferring the remaining genotypes in 
each step‎. ‎The‎ ‎information for predicting an efficient hap-
lotype is calculated ‎using the remaining genotypes and the 
haplotypes which are already‎ ‎added to the set of the haplo-
types‎. ‎Since we use pure‎ ‎parsimony approach‎, ‎a new measure 
is introduced for evaluating the‎ ‎effectiveness of algorithms‎. 
‎This new measure is the number of‎ ‎haplotypes that the al-
gorithm returns as the output‎. ‎If this‎ ‎number is less than or 
equal to the number of original haplotypes‎, ‎the results are 
very close to the results of pure parsimony‎. ‎The‎ ‎running time 
of the algorithm is O(m3n) where m is the number ‎of given 
genotypes and n is the number of SNP sites‎.
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Table 4. Thirteen haplotypes of ACE genes.

Table 5. Ten genotypes of ACE genes.

Table 6. Error rate of ACE dataset.

Table 7. Haplotypes for Maize dataset.

Table 8. Error rates of Maize dataset.

Table 9. Error rates of simulated dataset.
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